Considerations To Know About البيانات الضخمة
تحسين صنع القرارات: تمكّن البيانات الضخمة المؤسسات والشركات من جمع وتحليل كميات هائلة من المعلومات. يُمكن استخدام هذه المعلومات لاتخاذ قرارات أفضل وأكثر دقة في مجالات مثل التسويق والمبيعات وإدارة الموارد البشرية وتخطيط الإنتاج.
تكتسب الشركات قيمة من خلال قدرتها على تحقيق الدخل من الرؤى التي توفرها البيانات الضخمة. يتعرفون على عملائهم بشكل أفضل ويستمرون في تقديم عروض أكثر صلة.
تعد البيانات الضخمة تحولًا هامًا في العصر الحديث، حيث تمثل إمكانية استخدام البيانات الكبيرة لاستخلاص معلومات قيمة تؤثر في العديد من المجالات. من خلال استخدام التقنيات المناسبة والتحليل الذكي، يمكن للشركات والمؤسسات استغلال هذه البيانات لاتخاذ قرارات أفضل وتحسين أداء أعمالهم.
تحسين سلسلة التوريد: يمكن استخدام البيانات الضخمة لتحسين سلسلة التوريد بتوفير رؤى أفضل حول توقعات الطلب وإدارة المخزون.
تتضمن عملية معالجة البيانات الكبيرة عدة خطوات أساسية، بدءًا من جمع البيانات وتخزينها في قواعد بيانات موثوقة وسهلة الوصول.
تحديات التخزين: تخزين البيانات الضخمة يتطلب مساحة تخزين كبيرة وبنية تحتية قوية.
يمكن أن تكون تحليلات البيانات الضخمة أيضًا مقياسًا للمشاعر ، يقيس شعور المستهلكين تجاه علامتك التجارية أو خدمتك البيانات الضخمة أو منتجك.
نقص الأمان: يتطلب تخزين ومعالجة البيانات الضخمة نظم أمان قوية وإجراءات وقائية لمنع الوصول غير المصرح به والاستخدام السلبي.
يمكن أن تتكون البيانات الضخمة من بيانات منظمة تقليدية أو بيانات غير منظمة أو شبه منظمة. من الأمثلة على البيانات الضخمة غير المهيكلة – والمتنامية باستمرار – البيانات التي ينشئها المستخدم على وسائل التواصل الاجتماعي.
قوانين حماية الخصوصية: قد تتطلب قوانين حماية البيانات وحماية الخصوصية من المؤسسات والشركات أن تحترم القوانين واللوائح المتعلقة بجمع واستخدام البيانات الشخصية.
مثال على نموذج هرمي لتحسين الرصيف والذي ينقسم إلى ثلاث فئات ، والتي قد يكون لها فئاتها الخاصة. يجب أن تتجه جميع الهياكل إلى أسفل ولا يمكن الاتصال مرة أخرى بفئة رئيسية. هذا يشكل علاقة رأس بأطراف تسمى شجرة. “النموذج الهرمي” بقلم وزارة النقل الأمريكية ، بدون تاريخ. المجال العام.
استخدام البيانات الضخمة وتقنيات الذكاء الاصطناعي للتنبؤ بالسلوكيات واتخاذ القرارات في الوقت الحقيقي.
الذكاء الاصطناعي الذكاء الاصطناعي والأتمتة: نظرة شاملة
تحمل البيانات الكبيرة العديد من العوامل التي تميزها عن البيانات التقليدية. من أبرز تلك العوامل: